Close
  Indian J Med Microbiol
 

Figure 5: ESR spectra of superoxide anion radicals (•O2) and hydroxyl radicals (•OH) upon addition of alternating current-electrolytically prepared hydrogen-rich water. Note: (A, B) An ability of hydrogen-rich water to scavenge superoxide anion radicals, as evaluated by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-spin trapping/electron spin resonance (ESR) method. (A) superoxide anion radicals generated by hypoxanthine-xanthine oxidase enzymatic reaction. (B) superoxide anion radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis. (C, D) An ability of hydrogen-rich water to scavenge hydroxyl radicals, as evaluated by DMPO-spin trapping/ESR method. (C) hydroxyl radicals generated by the Fenton reaction. (D) ESR spectrum of hydroxyl radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis.

Figure 5: ESR spectra of superoxide anion radicals (•O<sub>2</sub><sup>–</sup>) and hydroxyl radicals (•OH) upon addition of alternating current-electrolytically prepared hydrogen-rich water.
Note: (A, B) An ability of hydrogen-rich water to scavenge superoxide anion radicals, as evaluated by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-spin trapping/electron spin resonance (ESR) method. (A) superoxide anion radicals generated by hypoxanthine-xanthine oxidase enzymatic reaction. (B) superoxide anion radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis. (C, D) An ability of hydrogen-rich water to scavenge hydroxyl radicals, as evaluated by DMPO-spin trapping/ESR method. (C) hydroxyl radicals generated by the Fenton reaction. (D) ESR spectrum of hydroxyl radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis.