|
|
REVIEW |
|
Year : 2017 | Volume
: 7
| Issue : 3 | Page : 212-219 |
|
Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility
Noel L Smith1, Anthony L Wilson2, Jason Gandhi3, Sohrab Vatsia4, Sardar Ali Khan M.D. 5
1 Foley Plaza Medical, New York, NY, USA 2 Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA 3 Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA; Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies 4 Department of Cardiothoracic Surgery, Lenox Hill Hospital, New York, NY, USA 5 Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY; Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, USA
Date of Web Publication | 17-Oct-2017 |
Correspondence Address: Sardar Ali Khan Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY; Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY USA
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/2045-9912.215752
The use of ozone (O3) gas as a therapy in alternative medicine has attracted skepticism due to its unstable molecular structure. However, copious volumes of research have provided evidence that O3's dynamic resonance structures facilitate physiological interactions useful in treating a myriad of pathologies. Specifically, O3 therapy induces moderate oxidative stress when interacting with lipids. This interaction increases endogenous production of antioxidants, local perfusion, and oxygen delivery, as well as enhances immune responses. We have conducted a comprehensive review of O3 therapy, investigating its contraindications, routes and concentrations of administration, mechanisms of action, disinfectant properties in various microorganisms, and its medicinal use in different pathologies. We explore the therapeutic value of O3 in pathologies of the cardiovascular system, gastrointestinal tract, genitourinary system, central nervous system, head and neck, musculoskeletal, subcutaneous tissue, and peripheral vascular disease. Despite compelling evidence, further studies are essential to mark it as a viable and quintessential treatment option in medicine. Keywords: ozone; ozone therapy; ozone gas; autohemotherapy; oxidative stress; reactive oxidative species; lipid ozonation products; oxidative preconditioning
How to cite this article: Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med Gas Res 2017;7:212-9 |
How to cite this URL: Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med Gas Res [serial online] 2017 [cited 2023 Mar 28];7:212-9. Available from: https://www.medgasres.com/text.asp?2017/7/3/212/215752 |
Introduction | |  |
Ozone (O3) gas was discovered in the 1840s, and soon after that, the scientific community began to expand past the notion that it was just another gas of the Earth's atmosphere. Though the migration of O3 into the medical field has taken a circuitous road since the 19th century, its medicinal value is currently controversial despite compelling research.[1] O3 is highly water-soluble inorganic molecule composed of three oxygen molecules. O3's inherently unstable molecular structure, due to the nature of its mesomeric states, tends to make it difficult to obtain high concentrations. O3 will often experience transient reactions with itself or water. Thus, it was initially problematic to achieve desired levels and even more difficult is to assess the therapeutic effects of such a transient state.[1],[2] These mesomeric states create a conundrum within the scientific community. A divide has formed between those who believe the volatile nature of these mesomeric states can foster positive responses and those who are wary of its seemingly dangerous effects.
Despite suspicions, a multitude of O3 therapies have shown substantial benefits that span a large variety of acute and chronic ailments. O3 is currently prevalent in dentistry to treat diseases of the jaw.[1] O3 has also proven itself beneficial as a disinfectant for drinking water and sterilization of medical instruments.[1],[3] The function of O3 shares similarities to that of a prodrug, as it is modified upon reacting with molecules to create more active substrates, thus stimulating an endogenous cascade of responses. On the other hand, it is hard to classify O3 as simply a prodrug, due to its capability to directly interact with phospholipids, lipoproteins, cell envelopes of bacteria, and viral capsids. The physiology of these biological responses is herein discussed.
Despite the various benefits, O3 toxicity and clinical utility depends on the concentration and administration to the appropriate site.[1],[2],[4],[5] One of the major contraindications of O3 therapy is lung inhalation. O3 therapy significantly increases airway resistance without changing the compliance or elastic characteristics of the lung.[1] Additionally, direct contact of O3 with the eyes and lungs is contraindicated because of the low antioxidant capabilities in these specific locations.[6]
Literature Retrieval | |  |
A MEDLINE® database search of literature extended from 1980 to 2017 to obtain current information regarding O3 therapy, its routes of administration, and mechanism of action. Subsequently, trials pertaining to the clinical implications of O3 therapy were paired by pathology and anatomical system. The most important points refer to the type of pathology, route of O3 administration, type of research trial, result(s) of the trial, side effect(s), and proposed physiological mechanism(s). Literature retrieval was performed in July 2017 and included the term “ozone therapy” combined with the following search criteria: “routes of administration”, “mechanism of action”, “cardiovascular”, “subcutaneous tissue”, “peripheral vascular disease”, “neurological”, “head and neck”, “orthopedic”, “musculoskeletal”, “gastrointestinal”, and “genitourinary”. We did not formulate any exclusion criteria.
Routes of Administration | |  |
O3 therapy combines a mixture of oxygen (O2)-O3, with a diverse therapeutic range (10–80 μg/ml of gas per ml of blood).[5],[6],[7] O3 therapy administration is variable based on treatment goals and location of therapy. The first and most popular is O3 autohemotransfusion (O3-Aht). O3-Aht has grown in popularity because it allows for a predetermined amount of blood to be taken and thus, using stoichiometric calculations, a precise concertation of O2-O3 can be infused. This small amount of blood is subjected to O2-O3 ex vivo is then administered to the patient.[5],[6] Extracorporeal blood oxygenation and ozonation are very similar techniques. However, its goal is to obtain higher blood volume than the 200–300 mL seen in O3-Aht.[5]
Other modalities of therapies include direct injection Via the intramuscular, intradiscal, and paravertebral site of administration. Rectal insufflation of O3-O3 is another common site of administration. However, insufflation of the nasal, tubal, oral, vaginal, vesical, pleural, and peritoneal cavities have proven to be prudent routes of administration. Cutaneous exposure has also had likely outcomes and can be achieved by sealing the portion of the body in a chamber or bag and insufflating with O3-O3 mixture. Saline with O3-O3 dissolved is used to avoid the risk of embolism when administered intravenously.[5]
Mechanism of Action | |  |
Antioxidant capacity
Upon beginning O3 therapy, a multifaceted endogenous cascade is initiated and releases biologically active substrates in response to the transient, and moderate, oxidative stress that O3 induces. O3 can cause this mild oxidative stress because of its ability to dissolve in the aqueous component of plasma.[8] By reacting with polyunsaturated fatty acids (PUFA) and water, O3 creates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). Simultaneously, O3 forms a mixture of lipid ozonation products (LOP).[9] The LOPs created after O3 exposure include lipoperoxyl radicals, hydroperoxides, malonyldialdeyde, isoprostanes, the ozonide and alkenals, and 4-hydroxynonenal (4-HNE).
Moderate oxidative stress caused by O3 increases activation of the transcriptional factor mediating nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2's domain is responsible for activating the transcription of antioxidant response elements (ARE). Upon induction of ARE transcription, an assortment of antioxidant enzymes gains increased concentration levels in response to the transient oxidative stress of O3. The antioxidants created include, but are not limited to, superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT), heme oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), heat shock proteins (HSP), and phase II enzymes of drug metabolism. Many of these enzymes act as free radical scavengers clinically relevant to a wide variety of diseases.[9]
O3, as well as other medical gases, e.g., carbon monoxide (CO) and nitric oxide (NO), has twofold effects depending on the amount given and the cell's redox status. There is a complex relationship between these three medical gases as O3 overexpresses HO-1, also referred to as HSPs of 32 kPa (Hsp32),[10] the enzyme responsible for CO formation, and downregulates NO synthase, which generates NO. Furthermore, O3 upregulates the expression levels of Hsp70 which, in turn, is strictly related to HO-1. O3 may have a developing role in Hsp-based diagnosis and therapy of free radical-based diseases. HO-1 degrades heme, which can be toxic depending on the amount produced, into free iron, CO, and biliverdin (i.e., precursor of bilirubin), a neutralizer of oxidative and nitrosative stress due to its ability to interact with NO and reactive nitrogen species.[11],[12] Recently, it is becoming clear the heat shock response (HSR) provides a cytoprotective state during inflammation, cancer, aging, and neurodegenerative disorders.[13] Given its extensive cytoprotective properties, the HSR is now a target for induction via pharmacological agents.[1] Hsp70 is involved in co- and post-translational folding, the quality control of misfolded proteins,[14] folding and assembly of de novo proteins into macromolecular complexes, as well as anti-aggregation, protein refolding, and degradation.[15] HO isoforms are acknowledged as dynamic sensors of cellular oxidative stress and regulators of redox homeostasis throughout the phylogenetic spectrum. The effect of O3 on these cell activities remains to be evaluated. Hormesis is a potent, endogenous defense mechanism for lethal ischemic and oxidative insults to multiple organ systems.[13] O3 may have a hormetic role in regulating the anti-inflammatory and proinflammatory effects of CO, including prostaglandin formation akin to NO, which has been shown to exert some of its biological actions through the modulation of prostaglandin endoperoxide synthase activity.[16] Inhibiting HO activity prevents CO biosynthesis and its downstream effects[17]; the effect of O3 on this cascade is yet to be determined.
Animal models have postulated the beneficial effects of prophylactic O3 therapy in controlling the age-related effects of oxidative stress.[18],[19] Evidence was provided to show that low O3 dose administration provided beneficial effects on age-related alterations in the heart and hippocampus of rats. Additional research has been performed and provided room for speculation that O3 therapy may provide the mediation of a mechanism involved in rebalancing the dysregulated redox state that accumulates as individuals age.[20] There was an apparent reduction of lipid and protein oxidation markers, lessening of lipofuscin deposition, restoration of glutathione (GSH) levels, and normalization of GPx activity in aged heart tissue. O3 was demonstrated to decrease age-associated energy failure in the heart and hippocampus of rats. Researchers suspect that the improved cardiac cytosolic calcium and restoration of weakened Na+-K+ ATPase activity in the heart and hippocampus, respectively, were associated with the improvements seen.[20]
In hopes of attaining a sense of the possible toxic components of O3 therapy, a study was done to assess the extent of lesions on human hematic mononucleated cells (HHMC), human thymic epithelium, murine macrophages, mouse splenocytes, and B16 melanoma murine cells. A significant finding of the study was that Hsp70 exhibited an O3-induced increase in biosynthesis in HHMC. Hsp70s are synthesized in response to thermal shock and other stressing agents to cope with the damage that stimulates their biosynthesis.[21] Additionally, they stimulate several immune system responses in lymphocytes and macrophages. The study provided evidence that O3 is a stressing agent capable of upregulating the biosynthesis of Hsp70, without toxicity to membranes. However, the membranes of macrophages are highly resistant to the possible toxicity of O3 at high concentrations; HHMC is less resistant at the high end of the spectrum. The statement above should not discount the effectiveness of O3 as a therapy because Hsp70s are induced in HHMCs without lesions up to 20 μg/mL— a typical dose given in O3-AHT.[21]
Cisplatin (CDDP), a treatment used in a variety of cancers has been observed to have nephrotoxicity in 25% of the patients as a side effect. The occurrence of this nephrotoxicity is thought to be secondary to the free radical generation and the inability of ROS scavengers to ameliorate these molecules, leading to acute renal failure. O2-O3 therapy was used to increase the antioxidant capacity of rats exposed to CDDP and compared to control groups. Serum creatine levels were significantly reduced compared to control groups, illustrating the decreased nephrotoxicity indirectly in the rats with CDDP and O2-O3 therapy. In addition to attenuating the nephrotoxicity, O2-O3 therapy also restores the levels of antioxidant defense constituents (GSH, SOD, CAT, and GSH-Px), which are usually decreased by CDDP. Also, thiobarbituric acid reactive substances (TBARS) were reduced, which is a marker of lipid peroxidation in the kidney.[22],[23]
Additional human studies examined the beneficial effects of O3 therapy employed via O3-AHT, in conjunction with coenzyme Q10, administered orally. The study evaluated SOD levels, a powerful antioxidant and catalase enzyme, an additional antioxidant enzyme in a control group, a group of O3 therapy by itself, and O3 therapy combined with Q10. Evidence has implied that SOD was significantly increased and catalase enzyme insignificantly increased in the O3 + Q10 group when compared to the control group. Malondialdehyde, a product of lipid peroxidation, is an indicator of oxidative membrane damage. Malondialdehyde levels were significantly decreased concentrations in the O3 + Q10 group when compared to the control group. Taken together, this study provides evidence of the beneficial effects of O3 therapy in combination with Q10 in combatting and the prevention of damage elicited by oxidation.[9]
Multiple studies have provided evidence that O3 therapy increased activation of the Nrf2 pathway via the induction of moderate oxidative stress.[15],[24] By doing so, a transient increase in H2O2 and LOPs enhances the number of antioxidants and therefore can be used for a longer time frame to re-establish the balance of the redox system. Additionally, the creation of these antioxidant enzymes has effects, not only at the level of O3 radical metabolism, but on the whole body.[22],[23]
Researchers have argued that knowing the total antioxidant status and plasma protein thiol group levels of a blood sample are indicators of the precise amount of O3 required to optimize treatments. By developing more accurate antioxidant status indicators, an individual treatment would achieve the correct dosage on a day and case basis.[7],[23],[25] Systems have been proposed to have a more precise measurement of the redox state of a patient to achieve this goal. One system proposes simultaneously measuring different biological markers in the blood such as GSH, GPx, GST, SOD, CAT, conjugated dienes, total hydroperoxides, and TBARS. Using an algorithm, information can be gathered about the total antioxidant activity, total pro-oxidant activity, redox index, and grade of oxidative stress. Systems like this can provide insights to the correct dosage and response to O3 therapy based on oxidative stress levels seen in the patient.[7],[23],[25]
Vascular and hematological modulation
O3 is a stimulator of the transmembrane flow of O2. The increase in O2 levels inside the cell secondary to O3 therapy makes the mitochondrial respiratory chain more efficient.[26] In red blood cells, O3-AHT may increase the activity of phosphofructokinase, increasing the rate of glycolysis. By enhancing the glycolytic rate, there is an increase in ATP and 2,3-diphosphoglycerate (2,3-DPG) in the cell. Subsequently, due to the Bohr effect, there is a rightward shift in the oxyhemoglobin dissociation curve allowing for the oxygen bound hemoglobin to be unloaded more readily to ischemic tissues. Combined with the increase in NO synthase activity, there is a marked increase in perfusion to the area under stimulation by O3-AHT.[27] With repeated treatment, sufficient enough LOP may be generated to reach the bone marrow acting as repeated stressors to simulate erythrogenesis and the upregulation of antioxidant enzyme upregulation. O3 also causes a reduction in nicotinamide adenine dinucleotide (NADH) and assists in the oxidation of cytochrome c.[1],[28]
O3 has also been shown to improve blood circulation and oxygen delivery to ischemic tissues.[29] Multiple studies have provided evidence that the correction of chronic oxidative stress via the increase of antioxidant enzymes in O3 can increase erythroblast differentiation. This leads to a progressive increase in erythrocytes and preconditions them to having resilience towards oxidative stress. This is known as “oxidative preconditioning”.[1],[30] Also, O3 increases levels of prostacyclin, a known vasodilator.[1]
Additionally, it was speculated that O3's oxidative capabilities would interfere with the endothelial production of NO and thus hinder vasodilation. However, studies have provided evidence that because NO is not substantially transported in the vasculature of the blood, a deleterious interaction is unlikely.[29] Since HO-derived bilirubin31 has been demonstrated to interact with NO,[11],[12] O3-induced HO upregulation could modify NO production and alter vasodilation.
Unpredictably, studies have shown an increase of NO, which led to speculation of O3's ability to activate genes associated with NO synthase expression to further promote higher levels of NO formation. Moreover, O3's stimulation of antioxidant enzymes are also speculated to increase NO levels. While endothelial generation of superoxide disrupts the activity of NO, O3 upregulates the enzymes to ameliorate the downstream effects of ROS responsible for deleterious vasoconstriction.[29],[32]
The prophylactic role of O3 has been explored with hepatic ischemia/reperfusion (I/R) injury, a phenomenon associated with liver transplantation. Hepatic I/R is a clinically unsolved problem mainly due to the unknown mechanisms that are the foundations of this ailment. In summary, O3 oxidative preconditionings (ozoneOPs) were found to protect against liver I/R injury through mechanisms that promote a regulation of endogenous NO concentrations and the maintenance of an adequate cellular redox balance. OzoneOPs are postulated to upregulate endogenous antioxidant systems and generate an increase in NO molecule generation, both of which are protective orders against liver and pancreas damage. The results in this animal model provided evidence that ozoneOPs protected against liver I/R via an increase in concentrations of endogenous NO and prime cells to have a more balanced redox system.[32] Additionally, enhanced activation of adenosine A1 receptors in rat models have been observed with ozoneOPs in liver I/R.[33]
Further studies have expanded upon this postulation by applying O3 therapy to renal I/R in rats. Renal I/R is a primary cause of acute renal failure after transplantation surgery. The findings of a study by Orakdogen et al. [34] indicated that the ozoneOPs allowed for a protective element when facing I/R. Following an increase in endothelial NO synthase and inducible NO synthase expression, it was concluded that ozoneOPs were intimately related to the increasing NO production as well as reducing renal damage by suppressing endothelin 1.[34]
Cerebral vasospasm after subarachnoid hemorrhage is a significant detriment to the recovery of patients. An animal model examined the effects intravenous O3 therapy on vasospasms in the rat femoral artery. Histopathological and morphometric measurements provided evidence that O3 therapy decreased morphometric changes, disruption of endothelial cells, and hemorrhages that are a result of vasospasm. The study speculated the anti-oxidative and anti-inflammatory effects of O3 might be a prudent treatment for posthemorrhagic vasospasm.[35]
Pathogen inactivation
When bacteria are exposed to O3 in vitro, the phospholipids, and lipoproteins that are within the bacterial cell envelope are oxidized. As this occurs, the stability of the bacterial cell envelope is attenuated. Moreover, evidence has demonstrated O3 to interact with fungal cell walls like bacteria. This disrupts the integrity of the cytosolic membrane and infiltrates the microorganisms to oxidize glycoproteins, glycolipids, and block enzymatic function. The combination of these reactions causes inhibition of fungi growth and mortality of bacteria and fungi.[1],[3],[5] In vitro, O3 has been shown to interfere with virus-to-cell contact in lipid-enveloped viruses via oxidation of lipoproteins, proteins, and glycoproteins, thus interfering with the viral reproductive cycles.[1],[3],[36]
Specifically, animal models have shown that O3 therapy as an adjunct to vancomycin enhances the animal's capability to eliminate methicillin-resistant Staphylococcus aureus mediastinitis.[37]
Immune system activation
In vivo, O3 therapy has been shown to have multifaceted effects when interacting with PUFA. As stated previously, O3 reacts with PUFA and other antioxidants, H2O2 and varies peroxidation compounds are formed. H2O2 readily diffuses into immune cells has been shown to act as a regulatory step in signal transduction and facilitating a myriad of immune responses.[36],[38] Specifically, increases in interferon, tumor necrosis factor, and interleukin (IL)-2 are seen. The increases with IL-2 are known to initiate immune response mechanisms.[1] Additionally, H2O2 activates nuclear factor-kappa B (NF-κB) and transforming growth factor beta (TGF-β), which increase immunoactive cytokine release and upregulate tissue remodeling. H2O2 mediates the action of NF-κB by enhancing the activity of tyrosine kinases that will phosphorylate IκB, a subunit of the transcription factor NF-κB.[34],[37] Low doses of O3 have been shown to inhibit prostaglandin synthesis, release bradykinin, and increase secretions of macrophages and leukocytes.[34] Having the correct amount of either of these oxidative markers can be used to create a sufficient rise in H2O2 and NO levels to stimulate the most notable increase in IL-8. IL-8 also activates NF-κB, allowing production of ROS scavengers.[7]
Animal models using O3 have shown to reduce and prevent inflammatory responses steming from the presence of E. coli in the renal system.[26],[38] Additional studies have provided evidence of the anti-inflammatory effects of O3. A study by Chang et al. [25] purified rheumatoid arthritis synovial fibroblast cells from human patients and injected them into immunocompromised mouse joints. Using an Ozonsan-α generator to deliver precise gas flows to vessels in the localized area, the authors discovered that 3% and 5% O3 application significantly decreased the proinflammatory cytokines IL-1β, IL-6, and TNF-α without any toxicity or severe side effects.[25]
Studies have shown that human cancer cells from lung, breast, and uterine tumors are inhibited in a dose-dependent manner by O3 therapy in vitro. O3 concentrations of 0.3 and 0.5 ppm inhibited cancer cell growth by 40% and 60%, respectively. Furthermore, the noncancerous cell controls were not affected by these levels of O3. At 0.8 ppm, cancer cell growth was inhibited by more than 90%. However, the control cell growth was less than 50%. Additionally, as control cells aged, they exhibited further growth inhibition and morphological changes. The study speculated that as the healthy cells matured, there was a decrease in growth due to the increased cellular damage incurred by each division.[39]
Clinical Utility | |  |
With its ever-growing ubiquity, O3 therapy is finding a place in many branches of medicine and medical specialties. In fact, its clinical use can be arranged systematically into cardiovascular (Additional Table 1 [Additional file 1]), subcutaneous tissue (Additional Table 2 [Additional file 2]), peripheral vascular disease (Additional Table 3 [Additional file 3]), neurological (Additional Table 4 [Additional file 4]), head and neck (Additional Table 5 [Additional file 5]), orthopedic (Additional Table 6 [Additional file 6]), gastrointestinal (Additional Table 7 [Additional file 7]), and genitourinary (Additional Table 8 [Additional file 8]). These indications are a product of human clinical trials conducted for specific pathologies related to the aforementioned systems. Despite a lack of direct support of O3 therapy, the current Food and Drug Administration regulations do not restrict the use of it in situ ations where it has proven its safety and effectiveness. Nonetheless, there has been support for its safety and effectiveness in multi-international studies.
Conclusions | |  |
O3 therapy can alter the natural history of several disease and disorders, with potentially many more yet untested. A plethora of laboratory studies have provided evidence of O3's antioxidant capabilities, as well as vascular, hematological, and immune system modulations. This evidence has been further substantiated in clinical trials with O3 therapy being useful in the cardiovascular, subcutaneous tissue, peripheral vascular disease, neurological, head and neck, orthopedic, gastrointestinal, and genitourinary pathologies. O3 therapy has proven especially beneficial in the diabetic foot, ischemic wounds, and peripheral vascular disease, areas in which O3 use is most prevalent. Upcoming laboratory and translational research should begin to develop protocols for O3-AHT in attempts to establish a dose-response relationship as it has demonstrated high utility in a myriad of pathologies at varying concentrations. Despite the presently compelling evidence, future studies should include more double-blind, randomized clinical trials with greater sample sizes, determination of longevity in benefits produced, as well as methods of measurements and analysis.
Acknowledgments
The authors are thankful to Drs. Kelly Warren, Inefta Reid, Todd Miller, and Peter Brink (Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA) for departmental support, as well as Mrs. Wendy Isser and Ms. Grace Garey (Northport VA Medical Center Library, Northport, NY, USA) for literature retrieval.
Author contributions
NLS designed, organized, and wrote the article; ALW designed the outline, wrote the article, and solved queries related to scientific publications from the journals; JG performed literature searches, critiqued the literature findings, and wrote the article; SV critiqued and applied logical reasoning to the literature findings; SAK applied clinical concepts, revised the article to add logical reasoning, and cross-checked the referencing. All authors have read and approved the manuscript provided.
Conflicts of interest
The authors have no conflicts of interest to declare.
Plagiarism check
Checked twice by iThenticate.
Peer review
Externally peer reviewed.
Open peer reviewers
Ozan Akca, University of Louisville, USA; Nemoto Edwin, University of New Mexico Health Sciences Center, USA; Mancuso Cesare, Università Cattolica del Sacro Cuore, Italy.
Additional files
Additional Table 1: Cardiovascular indications for O3 therapy.
Additional Table 2: Subcutaneous tissue indications for O3 therapy.
Additional Table 3: Peripheral vascular disease indications for O3 therapy.
Additional Table 4: Neurological indications for O3 therapy.
Additional Table 5: Head and neck indications for O3 therapy.
Additional Table 6: Orthopedic indications for O3 therapy.
Additional Table 7: Gastrointestinal indications for O3 therapy.
Additional Table 8: Genitourinary indications for O3 therapy.[78]
References | |  |
1. | Elvis AM, Ekta JS. Ozone therapy: A clinical review. J Nat Sci Biol Med. 2011;2:66-70. |
2. | Zanardi I, Borrelli E, Valacchi G, Travagli V, Bocci V. Ozone: a multifaceted molecule with unexpected therapeutic activity. Curr Med Chem. 2016;23:304-314. |
3. | Azarpazhooh A, Limeback H. The application of ozone in dentistry: a systematic review of literature. J Dent. 2008;36:104-116. |
4. | Bocci VA. Tropospheric ozone toxicity vs. usefulness of ozone therapy. Arch Med Res. 2007;38:265-267. |
5. | Bocci VA. Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res. 2006;37:425-435. |
6. | Bocci V. Autohaemotherapy after treatment of blood with ozone. A reappraisal. J Int Med Res. 1994;22:131-144. |
7. | Bocci V, Valacchi G, Corradeschi F, Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm. 1998;7:313-317. |
8. | Bocci V, Larini A, Micheli V. Restoration of normoxia by ozone therapy may control neoplastic growth: a review and a working hypothesis. J Altern Complement Med. 2005;11:257-265. |
9. | Inal M, Dokumacioglu A, Ozcelik E, Ucar O. The effects of ozone therapy and coenzyme Q(1)(0) combination on oxidative stress markers in healthy subjects. Ir J Med Sci. 2011;180:703-707. |
10. | Bocci V, Aldinucci C, Mosci F, Carraro F, Valacchi G. Ozonation of human blood induces a remarkable upregulation of heme oxygenase-1 and heat stress protein-70. Mediators Inflamm. 2007;2007:26785.  [ PUBMED] |
11. | Mancuso C, Capone C, Ranieri SC, et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res. 2008;86:2235-2249.  [ PUBMED] |
12. | Barone E, Trombino S, Cassano R, et al. Characterization of the S-denitrosylating activity of bilirubin. J Cell Mol Med. 2009;13:2365-2375.  [ PUBMED] |
13. | Dattilo S, Mancuso C, Koverech G, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing. 2015;12:20. |
14. | Martínez-Sánchez G, Delgado-Roche L, Díaz-Batista A, Pérez-Davison G, Re L. Effects of ozone therapy on haemostatic and oxidative stress index in coronary artery disease. Eur J Pharmacol. 2012;691:156-162. |
15. | Bocci V, Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front Chem. 2015;3:4. |
16. | Mancuso C, Pistritto G, Tringali G, Grossman AB, Preziosi P, Navarra P. Evidence that carbon monoxide stimulates prostaglandin endoperoxide synthase activity in rat hypothalamic explants and in primary cultures of rat hypothalamic astrocytes. Brain Res Mol Brain Res. 1997;45:294-300. |
17. | Navarra P, Dello Russo C, Mancuso C, Preziosi P, Grossman A. Gaseous neuromodulators in the control of neuroendocrine stress axis. Ann N Y Acad Sci. 2000;917:638-646.  [ PUBMED] |
18. | Onal O, Yetisir F, Sarer AE, et al. Prophylactic ozone administration reduces intestinal mucosa injury induced by intestinal ischemia-reperfusion in the rat. Mediators Inflamm. 2015;2015:792016.  [ PUBMED] |
19. | Kal A, Kal O, Akillioglu I, et al. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury. Cutan Ocul Toxicol. 2017;36:39-47. |
20. | El-Sawalhi MM, Darwish HA, Mausouf MN, Shaheen AA. Modulation of age-related changes in oxidative stress markers and energy status in the rat heart and hippocampus: a significant role for ozone therapy. Cell Biochem Funct. 2013;31:518-525. |
21. | Cardile V, Jiang X, Russo A, Casella F, Renis M, Bindoni M. Effects of ozone on some biological activities of cells in vitro. Cell Biol Toxicol. 1995;11:11-21. |
22. | Gonzalez R, Borrego A, Zamora Z, et al. Reversion by ozone treatment of acute nephrotoxicity induced by cisplatin in rats. Mediators Inflamm. 2004;13:307-312. |
23. | Valacchi G, Bocci V. Studies on the biological effects of ozone: 11. Release of factors from human endothelial cells. Mediators Inflamm. 2000;9:271-276. |
24. | Re L, Martínez-Sánchez G, Bordicchia M, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol. 2014;742:158-162. |
25. | Chang JD, Lu HS, Chang YF, Wang D. Ameliorative effect of ozone on cytokine production in mice injected with human rheumatoid arthritis synovial fibroblast cells. Rheumatol Int. 2005;26:142-151. |
26. | Madej P, Plewka A, Madej JA, et al. Ozonotherapy in an induced septic shock. I. Effect of ozonotherapy on rat organs in evaluation of free radical reactions and selected enzymatic systems. Inflammation. 2007;30:52-58. |
27. | Bocci VA, Zanardi I, Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J Transl Med. 2011;9:66. |
28. | Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal. 2011;15:2335-2381. |
29. | Bocci V, Zanardi I, Huijberts MS, Travagli V. Diabetes and chronic oxidative stress. A perspective based on the possible usefulness of ozone therapy. Diabetes Metab Syndr. 2011;5:45-49. |
30. | León Fernández OS, Ajamieh HH, Berlanga J, et al. Ozone oxidative preconditioning is mediated by A1 adenosine receptors in a rat model of liver ischemia/reperfusion. Transpl Int. 2008;21:39-48. |
31. | Mancuso C. Bilirubin and brain: a pharmacological approach. Neuropharmacology. 2017;118:113-123. |
32. | Ajamieh HH, Menendez S, Martinez-Sanchez G, et al. Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia-reperfusion. Liver Int. 2004;24:55-62. |
33. | Chen H, Xing B, Liu X, et al. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury: the role of nitric oxide. J Surg Res. 2008;149:287-295. |
34. | Orakdogen M, Uslu S, Emon ST, Somay H, Meric ZC, Hakan T. The effect of ozone therapy on experimental vasospasm in the rat femoral artery. Turk Neurosurg. 2016;26:860-865. |
35. | Bocci V, Borrelli E, Travagli V, Zanardi I. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29:646-682. |
36. | Gulmen S, Kurtoglu T, Meteoglu I, Kaya S, Okutan H. Ozone therapy as an adjunct to vancomycin enhances bacterial elimination in methicillin resistant Staphylococcus aureus mediastinitis. J Surg Res. 2013;185:64-69. |
37. | Bocci V. Does ozone really “cure” cancer? Int J Cancer. 2008;123:1222; author reply 1223. |
38. | Caliskan B, Guven A, Ozler M, et al. Ozone therapy prevents renal inflammation and fibrosis in a rat model of acute pyelonephritis. Scand J Clin Lab Invest. 2011;71:473-480. |
39. | Sweet F, Kao MS, Lee SC, Hagar WL, Sweet WE. Ozone selectively inhibits growth of human cancer cells. Science. 1980;209:931-933. |
40. | Hernández F, Menéndez S, Wong R. Decrease of blood cholesterol and stimulation of antioxidative response in cardiopathy patients treated with endovenous ozone therapy. Free Radic Biol Med. 1995;19:115-119. |
41. | Wainstein J, Feldbrin Z, Boaz M, Harman-Boehm I. Efficacy of ozone-oxygen therapy for the treatment of diabetic foot ulcers. Diabetes Technol Ther. 2011;13:1255-1260. |
42. | Martínez-Sánchez G, Al-Dalain SM, Menéndez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523:151-161. |
43. | Bertolotti A, Izzo A, Grigolato PG, Iabichella ML. The use of ozone therapy in Buruli ulcer had an excellent outcome. BMJ Case Rep. 2013;2013:bcr2012008249. |
44. | Moore G, Griffith C, Peters A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot. 2000;63:1100-1106. |
45. | Shah P, Shyam AK, Shah S. Adjuvant combined ozone therapy for extensive wound over tibia. Indian J Orthop. 2011;45:376-379. |
46. | Tafil-Klawe M, Wozniak A, Drewa T, et al. Ozone therapy and the activity of selected lysosomal enzymes in blood serum of patients with lower limb ischaemia associated with obliterative atheromatosis. Med Sci Monit. 2002;8:CR520-525. |
47. | Romero Valdés A, Menéndez Cepero S, Gómez Moraleda M, Ley Pozo J. Ozone therapy in the advanced stages of arteriosclerosis obliterans. Angiologia. 1993;45:146-148. |
48. | Verrazzo G, Coppola L, Luongo C, et al. Hyperbaric oxygen, oxygen-ozone therapy, and rheologic parameters of blood in patients with peripheral occlusive arterial disease. Undersea Hyperb Med. 1995;22:17-22. |
49. | Giunta R, Coppola A, Luongo C, et al. Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann Hematol. 2001;80:745-748. |
50. | Di Paolo N, Bocci V, Garosi G, et al. Extracorporeal blood oxygenation and ozonation (EBOO) in man. preliminary report. Int J Artif Organs. 2000;23:131-141. |
51. | Di Paolo N, Bocci V, Salvo DP, et al. Extracorporeal blood oxygenation and ozonation (EBOO): a controlled trial in patients with peripheral artery disease. Int J Artif Organs. 2005;28:1039-1050. |
52. | Molinari F, Rimini D, Liboni W, et al. Cerebrovascular pattern improved by ozone autohemotherapy: an entropy-based study on multiple sclerosis patients. Med Biol Eng Comput. 2017;55:1163-1175. |
53. | Molinari F, Simonetti V, Franzini M, et al. Ozone autohemotherapy induces long-term cerebral metabolic changes in multiple sclerosis patients. Int J Immunopathol Pharmacol. 2014;27:379-389. |
54. | Lintas G, Molinari F, Simonetti V, Franzini M, Liboni W. Time and time-frequency analysis of near-infrared signals for the assessment of ozone autohemotherapy long-term effects in multiple sclerosis. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6171-6174. |
55. | Clavo B, Santana-Rodriguez N, Gutierrez D, et al. Long-term improvement in refractory headache following ozone therapy. J Altern Complement Med. 2013;19:453-458. |
56. | Clavo B, Catalá L, Pérez JL, Rodríguez V, Robaina F. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report. Evid Based Complement Alternat Med. 2004;1:315-319. |
57. | Clavo B, Suarez G, Aguilar Y, et al. Brain ischemia and hypometabolism treated by ozone therapy. Forsch Komplementmed. 2011;18:283-287. |
58. | Bocci V, Travagli V, Zanardi I. Randomised, double-blinded, placebo-controlled, clinical trial of ozone therapy as treatment of sudden sensorineural hearing loss. J Laryngol Otol. 2009;123:820; author reply 820. |
59. | Ragab A, Shreef E, Behiry E, Zalat S, Noaman M. Randomised, double-blinded, placebo-controlled, clinical trial of ozone therapy as treatment of sudden sensorineural hearing loss. J Laryngol Otol. 2009;123:54-60. |
60. | Clavo B, Ruiz A, Lloret M, et al. Adjuvant ozonetherapy in advanced head and neck tumors: a comparative study. Evid Based Complement Alternat Med. 2004;1:321-325. |
61. | Clavo B, Pérez JL, López L, et al. Ozone therapy for tumor oxygenation: a pilot study. Evid Based Complement Alternat Med. 2004;1:93-98. |
62. | Menéndez S, Del Cerro A, Alvarez T, Hernández F. Application of ozone therapy in the vestibulocochlear syndrome. Rev Recent Clin Trials. 2012;7:321-328. |
63. | Borrelli E, Bocci V. Visual improvement following ozonetherapy in dry age related macular degeneration; a review. Med Hypothesis Discov Innov Ophthalmol. 2013;2:47-51. |
64. | Steppan J, Meaders T, Muto M, Murphy KJ. A metaanalysis of the effectiveness and safety of ozone treatments for herniated lumbar discs. J Vasc Interv Radiol. 2010;21:534-548. |
65. | Paoloni M, Di Sante L, Cacchio A, et al. Intramuscular oxygen-ozone therapy in the treatment of acute back pain with lumbar disc herniation: a multicenter, randomized, double-blind, clinical trial of active and simulated lumbar paravertebral injection. Spine (Phila Pa 1976). 2009;34:1337-1344. |
66. | Oder B, Loewe M, Reisegger M, Lang W, Ilias W, Thurnher SA. CT-guided ozone/steroid therapy for the treatment of degenerative spinal disease--effect of age, gender, disc pathology and multi-segmental changes. Neuroradiology. 2008;50:777-785. |
67. | Magalhaes FN, Dotta L, Sasse A, Teixera MJ, Fonoff ET. Ozone therapy as a treatment for low back pain secondary to herniated disc: a systematic review and meta-analysis of randomized controlled trials. Pain Physician. 2012;15:E115-129. |
68. | Al-Jaziri AA, Mahmoodi SM. Painkilling effect of ozone-oxygen injection on spine and joint osteoarthritis. Saudi Med J. 2008;29:553-557. |
69. | Bonetti M, Fontana A, Albertini F. CT-guided oxygen-ozone treatment for first degree spondylolisthesis and spondylolysis. Acta Neurochir Suppl. 2005;92:87-92. |
70. | Bocci V, Paulesu L. Studies on the biological effects of ozone 1. Induction of interferon gamma on human leucocytes. Haematologica. 1990;75:510-515. |
71. | Zaky S, Kamel SE, Hassan MS, et al. Preliminary results of ozone therapy as a possible treatment for patients with chronic hepatitis C. J Altern Complement Med. 2011;17:259-263. |
72. | Zaky S, Fouad EA, Kotb HI. The effect of rectal ozone on the portal vein oxygenation and pharmacokinetics of propranolol in liver cirrhosis (a preliminary human study). Br J Clin Pharmacol. 2011;71:411-415. |
73. | Clavo B, Ceballos D, Gutierrez D, et al. Long-term control of refractory hemorrhagic radiation proctitis with ozone therapy. J Pain Symptom Manage. 2013;46:106-112. |
74. | Peretyagin SP, Vorobyov AV, Martusevich AK, et al. Ozonotherapy of the gastrointestinal tract stressinjuries at urgency patients and biocristalloscopic monitoring its effectiveness. Revista Ozonoterapia Rev. 2008;1:24-28. |
75. | Neimark AI, Nepomnyashchikh LM, Lushnikova EL, Bakarev MA, Abdullaev NA, Sizov KA. Microcirculation and structural reorganization of the bladder mucosa in chronic cystitis under conditions of ozone therapy. Bull Exp Biol Med. 2014;156:399-405. |
76. | Gu XB, Yang XJ, Zhu HY, Xu YQ, Liu XY. Effect of medical ozone therapy on renal blood flow and renal function of patients with chronic severe hepatitis. Chin Med J (Engl). 2010;123:2510-2513. |
77. | Clavo B, Gutiérrez D, Martín D, Suárez G, Hernández MA, Robaina F. Intravesical ozone therapy for progressive radiation-induced hematuria. J Altern Complement Med. 2005;11:539-541. |
78. | Bonforte G, Bellasi A, Riva H, et al. Ozone therapy: a potential adjunct approach to lower urinary tract infection? A case series report. G Ital Nefrol. 2013;30:gin/30.34.16. |
This article has been cited by | 1 |
Application of highly ozonated sunflower oil does not improve palatal wound healing: A randomized controlled clinical trial |
|
| Bruno B. Loureiro, Paola Juber, Alessandra A. Souza, Edson M. Cezario, Josué C. Lima-Junior, Karla Bianca F. C. Fontes, Isabela F. Soares, Elizangela P. Zuza | | Journal of Periodontology. 2023; | | [Pubmed] | [DOI] | | 2 |
Can systemic parenteral ozone therapy generate biological ozone? A new hypothesis |
|
| Maritza F. Díaz-Gómez, Frank Hernández-Rosales | | Advances in Redox Research. 2023; : 100063 | | [Pubmed] | [DOI] | | 3 |
Safety and effects of a commercial ozone foam preparation on endometrial environment and fertility of subfertile mares |
|
| Gian Guido Donato, Simonetta Appino, Alessia Bertero, Mariagrazia Lucia Poletto, Patrizia Nebbia, Patrizia Robino, Katia Varello, Elena Bozzetta, Leila Vincenti, Tiziana Nervo | | Journal of Equine Veterinary Science. 2023; : 104222 | | [Pubmed] | [DOI] | | 4 |
Healing refractory diabetic foot ulcers (DFUs) by ozone therapy and silver dressing: A case report |
|
| Babak Choobi Anzali, Rasoul Goli, Aysan Torabzadeh, Arezou Kiani, Mehran Rasouli, Sahar Majidi Balaneji | | International Journal of Surgery Case Reports. 2023; : 107970 | | [Pubmed] | [DOI] | | 5 |
Molecular effects of ozone on amino acids and proteins, especially human hemoglobin and albumin, and the need to personalize ozone concentration in major ozone autohemotherapy |
|
| Fouad Mehraban, Arefeh Seyedarabi | | Critical Reviews in Clinical Laboratory Sciences. 2023; : 1 | | [Pubmed] | [DOI] | | 6 |
Ozone Sauna Therapy (OST) and Pulsed Electromagnetic Field Therapy (PEMF) delivered via the HOCATT machine could improve endometriosis pain along with lowering serum inflammatory markers |
|
| Zaher Merhi, Daniella Emdin, Lisa Bosman, Thomas Incledon, Andre Hugo Smith | | American Journal of Reproductive Immunology. 2023; | | [Pubmed] | [DOI] | | 7 |
Ozonated Water Inhibits Hepatocellular Carcinoma Invasion and Metastasis by Regulating the HMGB1/NF-?B/STAT3 Signaling Pathway |
|
| Shuiying Tang, Bihong Xu, Huajin Pang, Lijun Xiao, Quelin Mei, Xiaofeng He | | Journal of Hepatocellular Carcinoma. 2023; Volume 10: 203 | | [Pubmed] | [DOI] | | 8 |
Comparative Study of Ozonated Olive Oil and Extra Virgin Olive Oil Effects on Oral Hygiene |
|
| Ramona Feier, Radu Mircea Sireteanu Cucui, Ramona Flavia Ratiu, Dana Baciu, Carmen Galea, Liliana Sachelarie, Claudia Nistor, Dorin Cocos, Loredana Liliana Hurjui, Eduard Radu Cernei | | Applied Sciences. 2023; 13(5): 2831 | | [Pubmed] | [DOI] | | 9 |
Potential Clinical Applications of Ozone Therapy in Dental Specialties—A Literature Review, Supported by Own Observations |
|
| Izabela Barczyk, Diana Maslyk, Natalia Walczuk, Karina Kijak, Piotr Skomro, Helena Gronwald, Maria Pawlak, Angelika Rusinska, Natalia Sadowska, Barbara Gronwald, Adam Andrzej Garstka, Danuta Lietz-Kijak | | International Journal of Environmental Research and Public Health. 2023; 20(3): 2048 | | [Pubmed] | [DOI] | | 10 |
Ozone in Chemotherapy-Induced Peripheral Neuropathy—Current State of Art, Possibilities, and Perspectives |
|
| Katarzyna Szklener, Anna Rudzinska, Pola Juchaniuk, Zuzanna Kabala | | International Journal of Molecular Sciences. 2023; 24(6): 5279 | | [Pubmed] | [DOI] | | 11 |
The Protective Role of Ozone Therapy in Kidney Disease: A Review |
|
| Luis Fernando Delgadillo-Valero, Estefani Yaquelin Hernández-Cruz, José Pedraza-Chaverri | | Life. 2023; 13(3): 752 | | [Pubmed] | [DOI] | | 12 |
Ozonation of Whole Blood Results in an Increased Release of Microparticles from Blood Cells |
|
| Barbara Boczkowska-Radziwon, Piotr Józef Olbromski, Anna Rogowska, Magdalena Bujno, Marta Mysliwiec, Agnieszka Zebrowska, Dariusz Sredzinski, Barbara Politynska, Marek Z. Wojtukiewicz, Piotr Radziwon | | Biomolecules. 2022; 12(2): 164 | | [Pubmed] | [DOI] | | 13 |
Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review |
|
| Alessandro de Sire, Nicola Marotta, Martina Ferrillo, Francesco Agostini, Cristiano Sconza, Lorenzo Lippi, Stefano Respizzi, Amerigo Giudice, Marco Invernizzi, Antonio Ammendolia | | International Journal of Molecular Sciences. 2022; 23(5): 2528 | | [Pubmed] | [DOI] | | 14 |
Therapeutic Treatment of Superoxide Dismutase 1 (G93A) Amyotrophic Lateral Sclerosis Model Mice with Medical Ozone Decelerates Trigeminal Motor Neuron Degeneration, Attenuates Microglial Proliferation, and Preserves Monocyte Levels in Mesenteric Lymph Nod |
|
| Michael Bette, Eileen Cors, Carolin Kresse, Burkhard Schütz | | International Journal of Molecular Sciences. 2022; 23(6): 3403 | | [Pubmed] | [DOI] | | 15 |
Effects of Various Disinfection Methods on the Material Properties of Silicone Dental Impressions of Different Types and Viscosities |
|
| Joanna Wezgowiec, Anna Paradowska-Stolarz, Andrzej Malysa, Sylwia Orzeszek, Piotr Seweryn, Mieszko Wieckiewicz | | International Journal of Molecular Sciences. 2022; 23(18): 10859 | | [Pubmed] | [DOI] | | 16 |
OZONE AS A COLLAGEN BIO-STIMULATOR |
|
| Beatriz Batista Pereira Gomes do Nascimento, Cristina Rech Feldmann | | Health and Society. 2022; 2(04): 07 | | [Pubmed] | [DOI] | | 17 |
Application of Ozone Therapy in Paediatric Dentistry |
|
| Maurizio D’Amario, Mariachiara Di Carlo, Salvatore Massimo Natale, Lucia Memè, Giuseppe Marzo, Giorgio Matarazzo, Mario Capogreco | | Applied Sciences. 2022; 12(21): 11100 | | [Pubmed] | [DOI] | | 18 |
Evaluation of Antimicrobial Efficacy of UVC Radiation, Gaseous Ozone, and Liquid Chemicals Used for Disinfection of Silicone Dental Impression Materials |
|
| Joanna Wezgowiec, Anna Wieczynska, Mieszko Wieckiewicz, Anna Czarny, Andrzej Malysa, Piotr Seweryn, Marek Zietek, Anna Paradowska-Stolarz | | Materials. 2022; 15(7): 2553 | | [Pubmed] | [DOI] | | 19 |
Kinetics of Lignin Removal from the Lignocellulosic Matrix after Ozone Transportation |
|
| Khurram Shahzad Baig | | Methane. 2022; 1(3): 177 | | [Pubmed] | [DOI] | | 20 |
The effectiveness of major ozone autohemotherapy in the treatment of fibromyalgia syndrome |
|
| Emine Dundar Ahi, Sevgi Ikbali Afsar | | Journal of Surgery and Medicine. 2022; 6(8): 746 | | [Pubmed] | [DOI] | | 21 |
Mechanisms of Action of Ozone Therapy in Emerging Viral Diseases: Immunomodulatory Effects and Therapeutic Advantages With Reference to SARS-CoV-2 |
|
| Alessandra Cenci, Iole Macchia, Valentina La Sorsa, Clemente Sbarigia, Valentina Di Donna, Donatella Pietraforte | | Frontiers in Microbiology. 2022; 13 | | [Pubmed] | [DOI] | | 22 |
Effects of ozone therapy on hematological, biochemical, and oxidative stress parameters of vaquejada athlete horses |
|
| A.C. Carvalho, J.V.S. Silva, J.W.C. Lopes, O.R.P. Araújo, M.O.F. Goulart, T.M.A. Mariz, C.A.P. Sarmento, P.B. Escodro | | Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2022; 74(6): 1024 | | [Pubmed] | [DOI] | | 23 |
Is Ozone therapy an adjunct treatment for SARS-CoV-2 / COVID-19 infection? |
|
| Pedro Iván Arias-Vázquez, Russell Arcila-Novelo, María Antonieta Ramírez-Wakamatzu | | Brazilian Journal of Pharmaceutical Sciences. 2022; 58 | | [Pubmed] | [DOI] | | 24 |
Combined treatment of patients with bacterial vaginosis using ozone therapy and an interferon inducer |
|
| G.O. Grechkanev, I.O. Strelets, E.A. Avetisyan, N.N. Nikishov, A.S. Korotkov, S.M. Avetisyan, D.N. Suchilin, V.K. Beloglazov, I.A. Kornilova | | Rossiiskii vestnik akushera-ginekologa. 2022; 22(3): 82 | | [Pubmed] | [DOI] | | 25 |
Analysis of Bactericidal Effect of Three Medical Ozonation Dosage Forms on Multidrug-Resistant Bacteria from Burn Patients |
|
| Xuan Wang, Dan Liao, Qiu-Ming Ji, Yu-Hong Yang, Ming-Chao Li, Xian-Yun Yi, Chi Li, Yu Chen, Hong-Bo Tao, Wen-Hui Zhai | | Infection and Drug Resistance. 2022; Volume 15: 1637 | | [Pubmed] | [DOI] | | 26 |
Liquid ozone therapies for the treatment of epithelial wounds: A systematic review and
meta-analysis
|
|
| Daniel J. Romary, Sarah A. Landsberger, K. Nicole Bradner, Mirian Ramirez, Brian R. Leon | | International Wound Journal. 2022; | | [Pubmed] | [DOI] | | 27 |
Ozonized glycerin (OG)-based cosmetic products lighten age spots on human facial skin |
|
| Keigo Hanada, Daiki Okuda, Ryuhei Ogi, Sayaka Kojima, Risa Tsuruoka, Gotaro Shiota | | Journal of Cosmetic Dermatology. 2022; | | [Pubmed] | [DOI] | | 28 |
Surface Ozone in the Atmosphere of Moscow during the COVID-19 Pandemic |
|
| E. V. Stepanov, V. V. Andreev, L. V. Konovaltseva, S. G. Kasoev | | Atmospheric and Oceanic Optics. 2022; 35(6): 732 | | [Pubmed] | [DOI] | | 29 |
Combining Ozonated Autohemotherapy with Pharmacological Therapy for Comorbid Insomnia and Myofascial Pain Syndrome: A Prospective Randomized Controlled Study |
|
| Wang Shen, Ning Liu, Zhonghua Ji, Hongwei Fang, Feng Liu, Wei Zhang, Xiuqin Yu, Mingxia Wang, Jinyuan Zhang, Xiangrui Wang, Mahmoud K. Al-Omiri | | Pain Research and Management. 2022; 2022: 1 | | [Pubmed] | [DOI] | | 30 |
Ozone induces autophagy by activating PPAR?/mTOR in rat chondrocytes treated with IL-1ß |
|
| Panpan Sun, Weicheng Xu, Xu Zhao, Cong Zhang, Xiaowen Lin, Moxuan Gong, Zhijian Fu | | Journal of Orthopaedic Surgery and Research. 2022; 17(1) | | [Pubmed] | [DOI] | | 31 |
Ozone high dose therapy (OHT) improves mitochondrial bioenergetics in peripheral blood mononuclear cells |
|
| Brigitte König, Johann Lahodny | | Translational Medicine Communications. 2022; 7(1) | | [Pubmed] | [DOI] | | 32 |
Effectiveness of ozone therapy in the treatment of endometritis in mares |
|
| Ana Caroline Araújo Ávila, Natália Castro Diniz, Rafael Torres Serpa, Maria Manoela Barata de Castro Chaves, Marco Antônio de Oliveira Viu, Rodrigo Arruda de Oliveira | | Journal of Equine Veterinary Science. 2022; : 103900 | | [Pubmed] | [DOI] | | 33 |
Oxygen therapy in traditional and immunotherapeutic treatment protocols of cancer patients: current reality and future prospects |
|
| Victor Ivanovich Seledtsov, Alexei A von Delwig | | Expert Review of Anticancer Therapy. 2022; : 1 | | [Pubmed] | [DOI] | | 34 |
Ozone-induced retinal vascular reactivity as assessed by optical coherence tomography angiography |
|
| Eyüp Düzgün, Tülay Sahin, Sümeyra Keles Yesiltas, Abdurrahman Alpaslan Alkan, Nejla Tükenmez Dikmen | | Photodiagnosis and Photodynamic Therapy. 2022; : 102957 | | [Pubmed] | [DOI] | | 35 |
Disinfection of polyvinyl siloxane impression material using ozone gas, 0.1% riboflavin, glutaraldehyde, and microwave irradiation and their effect on physical properties |
|
| Fahad Alkahtani | | Photodiagnosis and Photodynamic Therapy. 2022; : 103242 | | [Pubmed] | [DOI] | | 36 |
The effect of medical ozone therapy in addition to ovarian detorsion in ischemia reperfusion model |
|
| Sema Süzen Çaypinar, Sema Karakas, Cihan Kaya, Damlanur Sakiz, Salim Sezer, Murat Ekin | | Journal of Obstetrics and Gynaecology. 2022; : 1 | | [Pubmed] | [DOI] | | 37 |
Intra-articular ozone slows down the process of degeneration of articular cartilage in the knees of rats with osteoarthritis |
|
| Marcos Roberto Spassim, Renato Tadeus dos Santos, Luciana Grazziotin Rossato-Grando, Leonardo Cardoso, Julia Spanhol da Silva, Suyene Oltramari de Souza, Lia Mara Wibelinger, Charise Dallazem Bertol | | The Knee. 2022; 35: 114 | | [Pubmed] | [DOI] | | 38 |
Acute ambient air pollution exposure and placental Doppler results in the NICHD fetal growth studies – Singleton cohort |
|
| Marion Ouidir,Fasil Tekola-Ayele,Timothy Canty,Katherine L. Grantz,Anthony Sciscione,Daniel Tong,Rena R. Jones,Rajeshwari Sundaram,Andrew Williams,Danielle Stevens,Pauline Mendola | | Environmental Research. 2021; 202: 111728 | | [Pubmed] | [DOI] | | 39 |
Ozone Water Is an Effective Disinfectant for SARS-CoV-2 |
|
| Xiao Hu,Zhen Chen,Zhengyuan Su,Fei Deng,Xinwen Chen,Qi Yang,Pan Li,Quanjiao Chen,Jun Ma,Wuxiang Guan,Rongjuan Pei,Yun Wang | | Virologica Sinica. 2021; | | [Pubmed] | [DOI] | | 40 |
Iodine and Peroxide Index Rapid Determination by Mid- and Near-infrared Spectroscopy in Ozonated Sunflower Oil and Ozonated Fats |
|
| Julien Vinet,S. Tréguier,C. Levasseur-Garcia,A. Calmon,F. Violleau | | Ozone: Science & Engineering. 2021; : 1 | | [Pubmed] | [DOI] | | 41 |
The main uses of ozone therapy in diseases of large animals: A review |
|
| Ana Karine Lima de Souza,Raquel Ribeiro Colares,Ana Clara Lima de Souza | | Research in Veterinary Science. 2021; | | [Pubmed] | [DOI] | | 42 |
Ozone and its derivatives in Veterinary Medicine: a careful appraisal |
|
| Jéssica Rodrigues Orlandin,Luciana Cristina Machado,Carlos Eduardo Ambrósio,Valter Travagli | | Veterinary and Animal Science. 2021; : 100191 | | [Pubmed] | [DOI] | | 43 |
Ozone therapy for patients with COVID-19 pneumonia: Preliminary report of a prospective case-control study |
|
| Alberto Hernández,Montserrat Viñals,Asunción Pablos,Francisco Vilás,Peter J Papadakos,Duminda N. Wijeysundera,Sergio D. Bergese,Marc Vives | | International Immunopharmacology. 2021; 90: 107261 | | [Pubmed] | [DOI] | | 44 |
CORonavirus-19 mild to moderate pneumonia Management with blood Ozonization in patients with Respiratory failure (CORMOR) multicentric prospective randomized clinical trial |
|
| Emanuela Sozio,Amato De Monte,Giovanni Sermann,Flavio Bassi,Davide Sacchet,Francesco Sbrana,Andrea Ripoli,Francesco Curcio,Martina Fabris,Stefania Marengo,Daniele Italiani,Daniela Luciana Boccalatte-Rosa,Carlo Tascini | | International Immunopharmacology. 2021; : 107874 | | [Pubmed] | [DOI] | | 45 |
Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy |
|
| Lisa Petani, Valerie Wehrheim, Liane Koker, Markus Reischl, Martin Ungerer, Ulrich Gengenbach, Christian Pylatiuk | | Flexible and Printed Electronics. 2021; 6(4): 043003 | | [Pubmed] | [DOI] | | 46 |
Expert panel’s guideline on cervicogenic headache: The Chinese Association for the Study of Pain recommendation |
|
| Hong Xiao,Bao-Gan Peng,Ke Ma,Dong Huang,Xian-Guo Liu,Yan Lv,Qing Liu,Li-Juan Lu,Jin-Feng Liu,Yi-Mei Li,Tao Song,Wei Tao,Wen Shen,Xiao-Qiu Yang,Lin Wang,Xiao-Mei Zhang,Zhi-Gang Zhuang,Hui Liu,Yan-Qing Liu | | World Journal of Clinical Cases. 2021; 9(9): 2027 | | [Pubmed] | [DOI] | | 47 |
Ozone therapy as an alternative method for the treatment of diabetic foot ulcer: a case report |
|
| Navid Faraji,Rasoul Goli,Babak Choobianzali,Soheyla Bahrami,Ali Sadeghian,Nazila Sepehrnia,Mahmoodreza Ghalandari | | Journal of Medical Case Reports. 2021; 15(1) | | [Pubmed] | [DOI] | | 48 |
HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis |
|
| Elisabetta Ferraro,Maria Germanò,Rocco Mollace,Vincenzo Mollace,Natalia Malara,Maria C. Franco | | Oxidative Medicine and Cellular Longevity. 2021; 2021: 1 | | [Pubmed] | [DOI] | | 49 |
Effect of local ozone treatment on rats with anterior rectal resection and the possible mechanisms |
|
| Wei Zhang,Meng Wu,Peng Chen,Jiamin Zhang,Jiaze Ma,Yile Cheng,Xiaoliu Li,Junjie Hu,Wanli Li,Yuxin Du,Kang Ding,Zhimin Fan | | BioMedical Engineering OnLine. 2021; 20(1) | | [Pubmed] | [DOI] | | 50 |
Ozone oil promotes wound healing via increasing
miR
-21-5p-mediated inhibition of
RASA1 |
|
| Wei-Rong Xiao,Meng Wu,Xiang-Rong Bi | | Wound Repair and Regeneration. 2021; | | [Pubmed] | [DOI] | | 51 |
Effectiveness of ozone therapy in addition to conventional treatment on mortality in patients with COVID-19 |
|
| Sahin Çolak,Burcu Genç Yavuz,Mürsel Yavuz,Burak Özçelik,Metin Öner,Asu Özgültekin,Seniha Senbayrak | | International Journal of Clinical Practice. 2021; | | [Pubmed] | [DOI] | | 52 |
A systematic review of ozone therapy for treating chronically refractory wounds and ulcers |
|
| Qing Wen, Dongying Liu, Xian Wang, Yanli Zhang, Song Fang, Xianliang Qiu, Qiu Chen | | International Wound Journal. 2021; | | [Pubmed] | [DOI] | | 53 |
Topical Liposomal Ozonated Oil in Complicated Corneal Disease: A Report on Three Clinical Cases |
|
| Fedele Passidomo,Francesco Pignatelli,Giuseppe Addabbo,Ciro Costagliola | | International Medical Case Reports Journal. 2021; Volume 14: 327 | | [Pubmed] | [DOI] | | 54 |
The interference of ozone gas in kinects and mitochondrial potential of equine sperm submitted on cryopreservation |
|
| Iara Nóbrega Macêdo, Lucia Cristina Pereira Arruda, Breno Barros de Santana, Thalles Cloves Maciel de Moura, Maria Madalena Pessoa Guerra, Diogo Gutemberg Bezerra, Gustavo Ferrer Carneiro, Sildivane Valcácia Silva | | Animal Reproduction. 2021; 18(4) | | [Pubmed] | [DOI] | | 55 |
Does paravertebral ozone injection have efficacy as an additional treatment for acute lumbar disc herniation? A randomized, double-blind, placebo-controlled study |
|
| Hamza Sucuoglu,Nalan Soydas | | Journal of Back and Musculoskeletal Rehabilitation. 2021; : 1 | | [Pubmed] | [DOI] | | 56 |
The Relationship between Ozone and Human Blood in the Course of a Well-Controlled, Mild, and Transitory Oxidative Eustress |
|
| Gerardo Tricarico, Valter Travagli | | Antioxidants. 2021; 10(12): 1946 | | [Pubmed] | [DOI] | | 57 |
Topical Application of Ozonated Oils for the Treatment of MRSA Skin Infection in an Animal Model of Infected Ulcer |
|
| Vanessa Silva,Cecília Peirone,Rosa Capita,Carlos Alonso-Calleja,José A. Marques-Magallanes,Isabel Pires,Luís Maltez,José Eduardo Pereira,Gilberto Igrejas,Patrícia Poeta | | Biology. 2021; 10(5): 372 | | [Pubmed] | [DOI] | | 58 |
Ozone Gel in Chronic Periodontal Disease: A Randomized Clinical Trial on the Anti-Inflammatory Effects of Ozone Application |
|
| Marco Colombo,Simone Gallo,Alessandro Garofoli,Claudio Poggio,Carla Renata Arciola,Andrea Scribante | | Biology. 2021; 10(7): 625 | | [Pubmed] | [DOI] | | 59 |
Oxygen–Ozone Therapy in the Rehabilitation Field:State of the Art on Mechanisms of Action, Safety andEffectiveness in Patients with Musculoskeletal Disorders |
|
| Alessandro de Sire,Francesco Agostini,Lorenzo Lippi,Massimiliano Mangone,Simone Marchese,Carlo Cisari,Andrea Bernetti,Marco Invernizzi | | Biomolecules. 2021; 11(3): 356 | | [Pubmed] | [DOI] | | 60 |
Ozone as Modulator of Resorption and Inflammatory Response in Extruded Nucleus Pulposus Herniation. Revising Concepts |
|
| María de los Ángeles Erario,Eduardo Croce,Maria Teresita Moviglia Brandolino,Gustavo Moviglia,Aníbal M. Grangeat | | International Journal of Molecular Sciences. 2021; 22(18): 9946 | | [Pubmed] | [DOI] | | 61 |
Cold helium plasma as a modifier of free radical processes in the blood: in vitro study |
|
| Andrew K. Martusevich,Alexander G. Galka,Konstantin A. Karuzin,Alexander N. Tuzhilkin,Svetlana L. Malinovskaya | | AIMS Biophysics. 2021; 8(1): 34 | | [Pubmed] | [DOI] | | 62 |
Effect of topical ozonated sunflower oil on second intention wound healing in turtles: a randomised experimental study |
|
| Pedro J. Ginel,Joao Negrini,Rafael Guerra,Rosario Lucena,María T. Ruiz-Campillo,Elena Mozos | | Journal of Veterinary Science. 2021; 22 | | [Pubmed] | [DOI] | | 63 |
Ozonized Gel Against Four Candida Species: A Pilot Study and Clinical Perspectives |
|
| Vincenzina Monzillo,Fabiola Lallitto,Alba Russo,Claudio Poggio,Andrea Scribante,Carla Renata Arciola,Francesco Rocco Bertuccio,Marco Colombo | | Materials. 2020; 13(7): 1731 | | [Pubmed] | [DOI] | | 64 |
Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells |
|
| Jaehak Lee,Hyunjin Moon,Bonghye Ku,Keunho Lee,Cheol-Yong Hwang,Seung Joon Baek | | International Journal of Molecular Sciences. 2020; 21(12): 4556 | | [Pubmed] | [DOI] | | 65 |
Recent Developments in Ozone Sensor Technology for Medical Applications |
|
| Lisa Petani,Liane Koker,Janina Herrmann,Veit Hagenmeyer,Ulrich Gengenbach,Christian Pylatiuk | | Micromachines. 2020; 11(6): 624 | | [Pubmed] | [DOI] | | 66 |
Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques |
|
| Elena Ugazio,Vivian Tullio,Arianna Binello,Silvia Tagliapietra,Franco Dosio | | Molecules. 2020; 25(2): 334 | | [Pubmed] | [DOI] | | 67 |
High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers |
|
| Vanessa Silva,Cecília Peirone,Joana S. Amaral,Rosa Capita,Carlos Alonso-Calleja,José A. Marques-Magallanes,Ângela Martins,Águeda Carvalho,Luís Maltez,José Eduardo Pereira,José Luís Capelo,Gilberto Igrejas,Patrícia Poeta | | Molecules. 2020; 25(16): 3601 | | [Pubmed] | [DOI] | | 68 |
Mechanisms and practical use of the bactericidal effects of ozone and ozonated oils |
|
| S. Schetinin | | Terapevt (General Physician). 2020; (6): 45 | | [Pubmed] | [DOI] | | 69 |
La importancia de reducir la carga viral para disminuir el riesgo de contagio por COVID-19 |
|
| Livia Contreras-Bulnes,David Rodríguez-Marín, Rufino Iribarren-Moreno,Javier Bucio-Duarte, Carlos de J Álvarez-Díaz,Estela Vélez-Benítez, Guillermo Ramos-Gallardo,Jesús Cuenca-Pardo | | Cirugía Plástica. 2020; 30(2): 78 | | [Pubmed] | [DOI] | | 70 |
The importance of reducing the viral load to diminish the risk of COVID-19 spread |
|
| Livia Contreras-Bulnes,David Rodríguez-Marín, Rufino Iribarren-Moreno,Javier Bucio-Duarte, Carlos de J Álvarez-Díaz,Estela Vélez-Benítez, Guillermo Ramos-Gallardo,Jesús Cuenca-Pardo | | Cirugía Plástica. 2020; 30(2): 78 | | [Pubmed] | [DOI] | | 71 |
Ozone Exposure Induces Metabolic Disorders and NAD+ Depletion Through PARP1 Activation in Spinal Cord Neurons |
|
| Shulin Ma,Xu Zhao,Cong Zhang,Panpan Sun,Yun Li,Xiaowen Lin,Tao Sun,Zhijian Fu | | Frontiers in Medicine. 2020; 7 | | [Pubmed] | [DOI] | | 72 |
The effects of ozone therapy on postoperative adhesions and ovarian functions: An experimental study |
|
| Rulin DENIZ,Yakup BAYKUS,Muhammet Bora UZUNER,Yasemen ADALI | | Journal of Surgery and Medicine. 2020; | | [Pubmed] | [DOI] | | 73 |
The effect of ozone injection within a common peroneal nerve schwannoma: A mistreatment due to a misdiagnosis |
|
| Ignazio Gaspare Vetrano,Francesco Acerbi,Gianluca Marucci,Vittoria Nazzi | | Surgical Neurology International. 2020; 11: 413 | | [Pubmed] | [DOI] | | 74 |
Ozone therapy with local cellular immune modulation and disc progenitor cell implant is safe, effective and efficient |
|
| AM Grangeat, EA Crocce, MA Erario, MT Moviglia Brandolino, SL Piccone, MA Lopez, GA Moviglia | | Open Journal of Orthopedics and Rheumatology. 2020; 5(1): 024 | | [Pubmed] | [DOI] | | 75 |
Modification of Hypoxic States in Photodynamic Therapy |
|
| A. B. Gapeyev,T. G. Shcherbatyuk | | Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2020; 14(3): 184 | | [Pubmed] | [DOI] | | 76 |
Antimycotic Activity of Ozonized Oil in Liposome Eye Drops against Candida spp. |
|
| Giuseppe Celenza,Roberto Iorio,Salvatore Cracchiolo,Sabrina Petricca,Ciro Costagliola,Benedetta Cinque,Bernardetta Segatore,Gianfranco Amicosante,Pierangelo Bellio | | Translational Vision Science & Technology. 2020; 9(8): 4 | | [Pubmed] | [DOI] | | 77 |
Comment on “Unknown Challenge #8: Pneumomastia”: Additional Differential Diagnosis to Pneumomastia |
|
| Haydee Ojeda-Fournier | | Journal of Breast Imaging. 2020; | | [Pubmed] | [DOI] | | 78 |
AMPK activation by ozone therapy inhibits tissue factor-triggered intestinal ischemia and ameliorates chemotherapeutic enteritis |
|
| Qingqing Yu,Xing Yang,Chen Zhang,Xiaotao Zhang,Chaoyu Wang,Lu Chen,Xiaolin Liu,Yufeng Gu,Xueming He,Liang Hu,Wen-Tao Liu,Yan Li | | The FASEB Journal. 2020; | | [Pubmed] | [DOI] | | 79 |
Effects of ozone for treating chronically refractory wounds and ulcers |
|
| Qing Wen,Dongying Liu,Xian Wang,Yanli Zhang,Song Fang,Xianliang Qiu,Qiu Chen | | Medicine. 2020; 99(22): e20457 | | [Pubmed] | [DOI] | | 80 |
Ozone therapy in veterinary medicine: A review |
|
| R.L. Sciorsci,E. Lillo,L. Occhiogrosso,A. Rizzo | | Research in Veterinary Science. 2020; 130: 240 | | [Pubmed] | [DOI] | | 81 |
Effects of ozone treatment on penile erection capacity and nitric oxide synthase levels in diabetic rats |
|
| Aykut Colakerol,Mustafa Zafer Temiz,Hasan Huseyin Tavukcu,Serdar Aykan,Sule Ozsoy,Ahmet Sahan,Engin Kandirali,Atilla Semercioz | | International Journal of Impotence Research. 2020; | | [Pubmed] | [DOI] | | 82 |
An Overview of Ozone Therapy for Treating Foot Ulcers in Patients with Diabetes |
|
| Qing Wen,Qiu Chen | | The American Journal of the Medical Sciences. 2020; | | [Pubmed] | [DOI] | | 83 |
Effect of ozone therapy on wound healing in the buccal mucosa of rats |
|
| Robson Pchepiorka,Maria Stella Moreira,Nelise Alexandre da Silva Lascane,Luiz Henrique Catalani,Sérgio Allegrini Jr,Nelson Batista de Lima,e Flávia Gonçalves | | Archives of Oral Biology. 2020; 119: 104889 | | [Pubmed] | [DOI] | | 84 |
Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders |
|
| Catia Scassellati,Antonio Carlo Galoforo,Cristian Bonvicini,Ciro Esposito,Giovanni Ricevuti | | Ageing Research Reviews. 2020; : 101138 | | [Pubmed] | [DOI] | | 85 |
Efficacy of ozonated water mouthwash on early plaque formation and gingival inflammation: a randomized controlled crossover clinical trial |
|
| Alessandra Cardoso Nicolini,Isadora dos Santos Rotta,Gerson Pedro José Langa,Stephanie Anagnostopoulos Friedrich,David Alejandro Arroyo-Bonilla,Marcius Comparsi Wagner,Patrícia Weidlich,Cassiano Kuchenbecker Rösing,Juliano Cavagni | | Clinical Oral Investigations. 2020; | | [Pubmed] | [DOI] | | 86 |
Anti-inflammatory Effect of Ozone Therapy in an Experimental Model of Rheumatoid Arthritis |
|
| Ana Paula Santos Tartari,Felipe Figueiredo Moreira,Mário César Da Silva Pereira,Emerson Carraro,Francisco José Cidral-Filho,Afonso Inoue Salgado,Ivo Ilvan Kerppers | | Inflammation. 2020; | | [Pubmed] | [DOI] | | 87 |
A preliminary evaluation on the efficacy of ozone therapy in the treatment of COVID-19 |
|
| Zhishui Zheng,Minglin Dong,Ke Hu | | Journal of Medical Virology. 2020; | | [Pubmed] | [DOI] | | 88 |
Blood ozonization in patients with mild to moderate COVID-19 pneumonia: a single centre experience |
|
| Carlo Tascini,Giovanni Sermann,Alberto Pagotto,Emanuela Sozio,Chiara De Carlo,Alessandro Giacinta,Francesco Sbrana,Andrea Ripoli,Nadia Castaldo,Maria Merelli,Barbara Cadeo,Cristiana Macor,Amato De Monte | | Internal and Emergency Medicine. 2020; | | [Pubmed] | [DOI] | | 89 |
Molecular mechanisms in Cognitive Frailty: potential therapeutic targets for oxygen-ozone treatment |
|
| Catia Scassellati,Miriam Ciani,Antonio Carlo Galoforo,Roberta Zanardini,Cristian Bonvicini,Cristina Geroldi | | Mechanisms of Ageing and Development. 2020; : 111210 | | [Pubmed] | [DOI] | | 90 |
Changes in Th17 cells frequency and function after ozone therapy used to treat multiple sclerosis patients |
|
| Morteza Izadi,Safa Tahmasebi,Inna Pustokhina,Alexei Valerievich Yumashev,Tayyebeh Lakzaei,Akbar Ghorbani Alvanegh,Leila Roshangar,Mehdi Dadashpour,Mehdi Yousefi,Majid Ahmadi | | Multiple Sclerosis and Related Disorders. 2020; 46: 102466 | | [Pubmed] | [DOI] | | 91 |
The right therapeutic method of ozone therapy used to treat multiple sclerosis patients |
|
| Valter Travagli | | Multiple Sclerosis and Related Disorders. 2020; 46: 102545 | | [Pubmed] | [DOI] | | 92 |
Effect of air pollution on hospitalization for acute exacerbation of chronic obstructive pulmonary disease, stroke, and myocardial infarction |
|
| Cai Chen,Xuejian Liu,Xianfeng Wang,Wenxiu Qu,Wei Li,Leilei Dong | | Environmental Science and Pollution Research. 2019; | | [Pubmed] | [DOI] | | 93 |
Types of microorganisms in proximal caries lesion and ozone treatment |
|
| Janet N. Kirilova,Snezhanka Z. Topalova-Pirinska,Dimitar N. Kirov,Elitsa G. Deliverska,Lilia B. Doichinova | | Biotechnology & Biotechnological Equipment. 2019; 33(1): 683 | | [Pubmed] | [DOI] | | 94 |
Ozone and pulsed electro-magnetic field therapies improve endometrial lining thickness in frozen embryo transfer cycles |
|
| Zaher Merhi,Rajean Moseley-LaRue,Amber Ray Moseley,André Hugo Smith,John Zhang | | Medicine. 2019; 98(34): e16865 | | [Pubmed] | [DOI] | | 95 |
Air Pollution and Angioedema |
|
| Suraj Kedarisetty,Evan Jones,Derrick Tint,Ahmed M. S. Soliman | | Otolaryngology–Head and Neck Surgery. 2019; 161(3): 431 | | [Pubmed] | [DOI] | | 96 |
Selected Office Based Anticancer Treatment Strategies |
|
| Jesse A. Stoff | | Journal of Oncology. 2019; 2019: 1 | | [Pubmed] | [DOI] | | 97 |
The Effect of Paravertebral Ozone Injection in the Treatment of Low Back Pain |
|
| Çagri Özcan,Ömer Polat,Haluk Çelik,Bekir Yavuz Uçar | | Pain Practice. 2019; | | [Pubmed] | [DOI] | | 98 |
Comparative Clinical Study the Effectiveness of Plasmapheresis with Ozone Therapy in the Prevention of Ocular Herpes Recurrence |
|
| M. G. Guliyeva | | Ophthalmology in Russia. 2019; 16(1): 76 | | [Pubmed] | [DOI] | | 99 |
Effects of antibiotic and intra-peritoneal ozone administration on proinflammatory cytokine formation, antioxidant levels and abdominal organ functions in the treatment of experimentally generated infectious peritonitis in rabbits |
|
| Ozlem Guzel, Ahmet Gulcubuk, Esma Yildar, Feraye Esen Gursel, Iraz Akis, Funda Bagcigil, Ozge Erdogan Bamac, Gulay Yuzbasioglu Ozturk, Bulent Ekiz | | Veterinární medicína. 2019; 64(8): 348 | | [Pubmed] | [DOI] | | 100 |
The Biochemical and Pharmacological Properties of Ozone: The Smell of Protection in Acute and Chronic Diseases |
|
| Rosaria Di Mauro,Giuseppina Cantarella,Renato Bernardini,Michelino Di Rosa,Ignazio Barbagallo,Alfio Distefano,Lucia Longhitano,Nunzio Vicario,Daniela Nicolosi,Giacomo Lazzarino,Daniele Tibullo,Maria Gulino,Mariarita Spampinato,Roberto Avola,Giovanni Li Volti | | International Journal of Molecular Sciences. 2019; 20(3): 634 | | [Pubmed] | [DOI] | | 101 |
Ozone Therapy in a Patient with Diabetic Foot Ulcerations and a Decision for Amputation |
|
| Saltuk Aytacoglu,Barlas Naim Aytacoglu | | Case Reports in Clinical Medicine. 2019; 08(02): 35 | | [Pubmed] | [DOI] | | 102 |
Successful treatment of acute-on-chronic liver failure and hemolytic anemia with hepato-protective drugs in combination with intravenous ozone without steroids: A case report |
|
| Zhaohui Bai,Hongyu Li,Yanqin Liu,Jiao Deng,Chunhui Wang,Yingying Li,Xingshun Qi | | Intractable & Rare Diseases Research. 2018; | | [Pubmed] | [DOI] | | 103 |
Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration |
|
| Natalia N. Nalivaeva,Anthony J. Turner,Igor A. Zhuravin | | Frontiers in Neuroscience. 2018; 12 | | [Pubmed] | [DOI] | | 104 |
Ozone Therapy as Adjuvant for Cancer Treatment: Is Further Research Warranted? |
|
| Bernardino Clavo,Norberto Santana-Rodríguez,Pedro Llontop,Dominga Gutiérrez,Gerardo Suárez,Laura López,Gloria Rovira,Gregorio Martínez-Sánchez,Esteban González,Ignacio J. Jorge,Carmen Perera,Jesús Blanco,Francisco Rodríguez-Esparragón | | Evidence-Based Complementary and Alternative Medicine. 2018; 2018: 1 | | [Pubmed] | [DOI] | | 105 |
Molecular insights into the effect of ozone on human hemoglobin in autohemotherapy: Highlighting the importance of the presence of blood antioxidants during ozonation |
|
| Fouad Mehraban,Arefeh Seyedarabi,Zahra Seraj,Shahin Ahmadian,Najmeh Poursasan,Saeed Rayati,Ali Akbar Moosavi-Movahedi | | International Journal of Biological Macromolecules. 2018; 119: 1276 | | [Pubmed] | [DOI] | |
|
 |
 |
|