Medical Gas Research

RESEARCH ARTICLE
Year
: 2017  |  Volume : 7  |  Issue : 4  |  Page : 226--235

Exposure to 60% oxygen promotes migration and upregulates angiogenesis factor secretion in breast cancer cells


Peter D Crowley1, Vivian Stuttgen2, Emma O'Carroll1, Simon A Ash3, Donal J Buggy4, Helen C Gallagher5 
1 School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
2 School of Medicine, Conway Institute, University College Dublin; School of Veterinary Medicine, Conway Institute, University College Dublin, Dublin, Ireland
3 School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland; Discipline of Anesthesia, Memorial University, Canada
4 School of Medicine, Conway Institute, University College Dublin; Mater Misericordiae University Hospital, Dublin, Ireland; Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA; UCD-Mater Clinical Research Centre, Catherine McCauley Centre, Dublin, Ireland
5 School of Medicine, Conway Institute, University College Dublin; UCD-Mater Clinical Research Centre, Catherine McCauley Centre, Dublin, Ireland

Correspondence Address:
Peter D Crowley
School of Medicine, Conway Institute, University College Dublin, Dublin
Ireland

Peri-operative factors, including anaesthetic drugs and techniques, may affect cancer cell biology and clinical recurrence. In breast cancer cells, we demonstrated that sevoflurane promotes migration and angiogenesis in high fractional oxygen but not in air. Follow-up analysis of the peri-operative oxygen fraction trial found an association between high inspired oxygen during cancer surgery and reduced tumor-free survival. Here we evaluated effects of acute, high oxygen exposure on breast cancer cell viability, migration and secretion of angiogenesis factors in vitro. MDA-MB-231and MCF-7 breast cancer cells were exposed to 21%, 30%, 60%, or 80% v/v O2 for 3 hours. Cell viability at 24 hours was determined by MTT and migration at 24 hours with the Oris™ Cell Migration Assay. Secretion of angiogenesis factors at 24 hours was measured via membrane-based immunoarray. Exposure to 30%, 60% or 80% oxygen did not affect cell viability. Migration of MDA-MB-231 and MCF-7 cells was increased by 60% oxygen (P = 0.012 and P = 0.007, respectively) while 30% oxygen increased migration in MCF-7 cells (P = 0.011). These effects were reversed by dimethyloxaloylglycine. In MDA-MB-231 cells high fractional oxygen increased secretion of angiogenesis factors monocyte chemotactic protein 1, regulated on activation normal T-cell expressed and vascular endothelial growth factor. In MCF-7 cells, interleukin-8, angiogenin and vascular endothelial growth factor secretion was significantly increased by high fractional oxygen. High oxygen exposure stimulates migration and secretion of angiogenesis factors in breast cancer cells in vitro.


How to cite this article:
Crowley PD, Stuttgen V, O'Carroll E, Ash SA, Buggy DJ, Gallagher HC. Exposure to 60% oxygen promotes migration and upregulates angiogenesis factor secretion in breast cancer cells.Med Gas Res 2017;7:226-235


How to cite this URL:
Crowley PD, Stuttgen V, O'Carroll E, Ash SA, Buggy DJ, Gallagher HC. Exposure to 60% oxygen promotes migration and upregulates angiogenesis factor secretion in breast cancer cells. Med Gas Res [serial online] 2017 [cited 2018 Feb 24 ];7:226-235
Available from: http://www.medgasres.com/article.asp?issn=2045-9912;year=2017;volume=7;issue=4;spage=226;epage=235;aulast=Crowley;type=0