• Users Online: 643
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2019  |  Volume : 9  |  Issue : 3  |  Page : 122-126

Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest


1 Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
2 Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
3 Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
4 Department of Pharmacy, 1st Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou Province, China
5 Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
6 Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA

Correspondence Address:
Lei Huang
Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2045-9912.266986

Rights and Permissions

Cognitive deficits are a devastating neurological outcome seen in survivors of cardiac arrest. We previously reported water electrolysis derived 67% hydrogen gas inhalation has some beneficial effects on short-term outcomes in a rat model of global brain hypoxia-ischemia induced by asphyxia cardiac arrest. In the present study, we further investigated its protective effects in long-term spatial learning memory function using the same animal model. Water electrolysis derived 67% hydrogen gas was either administered 1 hour prior to cardiac arrest for 1 hour and at 1-hour post-resuscitation for 1 hour (pre- & post-treatment) or at 1-hour post-resuscitation for 2 hours (post-treatment). T-maze and Morris water maze were used for hippocampal memory function evaluation at 7 and 14 days post-resuscitation, respectively. Neuronal degeneration within hippocampal Cornu Ammonis 1 (CA1) regions was examined by Fluoro-Jade staining ex vivo. Hippocampal deficits were detected at 7 and 18 days post-resuscitation, with increased neuronal degeneration within hippocampal CA1 regions. Both hydrogen gas treatment regimens significantly improved spatial learning function and attenuated neuronal degeneration within hippocampal CA1 regions at 18 days post-resuscitation. Our findings suggest that water electrolysis derived 67% hydrogen gas may be an effective therapeutic approach for improving cognitive outcomes associated with global brain hypoxia-ischemia following cardiac arrest. The study was approved by the Animal Health and Safety Committees of Loma Linda University, USA (approval number: IACUC #8170006) on March 2, 2017.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed574    
    Printed45    
    Emailed0    
    PDF Downloaded85    
    Comments [Add]    

Recommend this journal