• Users Online: 325
  • Home
  • Print this page
  • Email this page
REVIEW
Year : 2018  |  Volume : 8  |  Issue : 3  |  Page : 98-102

Emerging mechanisms and novel applications of hydrogen gas therapy


1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
2 Department of Physiology and Pharmacology; Department of Anesthesiology; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA

Correspondence Address:
John H Zhang
Department of Physiology and Pharmacology; Department of Anesthesiology; Department of Neurosurgery, Loma Linda University, Loma Linda, CA
USA
Login to access the Email id

Source of Support: This work was supported by the National Institutes of Health grant (NS081740 to JHZ)., Conflict of Interest: None


DOI: 10.4103/2045-9912.239959

Rights and Permissions

Clinical and pre-clinical studies have reported a broad range of applications for hydrogen gas therapy. Classically, conventional antioxidant therapy is limited because it neutralizes both the detrimental and protective effects of reactive oxygen species. As a weak reducing agent, hydrogen gas avoids this paradox by reacting with strong oxidants while leaving other beneficial oxidants reactive. This review gathers a promising list of hydrogen gas applications that merit further mechanistic investigation and additional therapeutic trials. Reports support the ability of hydrogen gas to downregulate the expression of pro-inflammatory cytokines and pro-apoptotic factors. Mechanistically, hydrogen gas has been shown to downregulate miR-9 and miR-21, while upregulating miR-199 to reduce inflammatory injury. In angiogenic pathways, hydrogen’s inhibition of cyclic guanosine monophosphate-degrading phosphodiesterase led to higher levels of cyclic guanosine monophosphate, activation of protein kinase, and angiogenesis; next, as hydrogen gas increased the levels of intracellular calcium, stimulated vascular endothelial growth factor increased nitric oxide production. In conjunction, hydrogen gas opened adenosine triphosphate-sensitive potassium channel channels, which activate downstream mitogen-activated protein kinase pathways. Growing molecular mechanisms have discovered a plethora of downstream targets for hydrogen gas therapy that include autophagy (via the adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin pathway), histone modification, mitochondrial unfolded protein response, acute oxidative stress after exercise, and oxidative stress secondary to aging. In conclusion, evolving research has discovered novel molecular connections that will continue to widen applications for hydrogen therapy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed137    
    Printed2    
    Emailed0    
    PDF Downloaded46    
    Comments [Add]    

Recommend this journal