• Users Online: 231
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2017  |  Volume : 7  |  Issue : 1  |  Page : 28-36

A porcine ex vivo lung perfusion model with maximal argon exposure to attenuate ischemia-reperfusion injury


1 Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven; Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
2 Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven; Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
3 University Hospitals Leuven, Department of Histopathology, Leuven, Belgium
4 Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven; Laboratory of Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
5 Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
6 Air Liquide Santé International Medical R&D; Paris-Saclay Research Center, Jouy-en Josas, France

Correspondence Address:
Arne P Neyrinck
Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven; Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven
Belgium
Login to access the Email id

Source of Support: Air Liquide Santé International Medical R&D (Paris-Saclay, France), No. MEDGAS 13-360; Clinical Research Fund UZ Leuven (Leuven, Belgium)., Conflict of Interest: None


DOI: 10.4103/2045-9912.202907

Rights and Permissions

Argon (Ar) is a noble gas with known organoprotective effects in rodents and in vitro models. In a previous study we failed to find a postconditioning effect of Ar during ex vivo lung perfusion (EVLP) on warm-ischemic injury in a porcine model. In this study, we further investigated a prolonged exposure to Ar to decrease cold ischemia-reperfusion injury after lung transplantation in a porcine model with EVLP assessment. Domestic pigs (n = 6/group) were pre-conditioned for 6 hours with 21% O 2 and 79% N 2 (CONTR) or 79% Ar (ARG). Subsequently, lungs were cold flushed and stored inflated on ice for 18 hours inflated with the same gas mixtures. Next, lungs were perfused for 4 hours on EVLP (acellular) while ventilated with 12% O 2 and 88% N 2 (CONTR group) or 88% Ar (ARG group). The perfusate was saturated with the same gas mixture but with the addition of CO 2 to an end-tidal CO 2 of 35-45 mmHg. The saturated perfusate was drained and lungs were perfused with whole blood for an additional 2 hours on EVLP. Evaluation at the end of EVLP did not show significant effects on physiologic parameters by prolonged exposure to Ar. Also wet-to-dry weight ratio did not improve in the ARG group. Although in other organ systems protective effects of Ar have been shown, we did not detect beneficial effects of a high concentration of Ar on cold pulmonary ischemia-reperfusion injury in a porcine lung model after prolonged exposure to Ar in this porcine model with EVLP assessment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed238    
    Printed13    
    Emailed0    
    PDF Downloaded56    
    Comments [Add]    

Recommend this journal